Viene de: Si la Tierra fuese redonda.
El radio terrestre
Eratóstenes (275 – 194 a.C.) nació en la ciudad de Cyrene y pasó la mayor parte de su vida en Atenas. Notable como geógrafo, poeta, filósofo y matemático, pasó a la inmortalidad a partir de haber sido el primero en medir el radio terrestre. El método que utilizó es increíblemente sencillo:
Sabía que durante el solsticio de verano, en un pozo ubicado en la ciudad de Alejandría los rayos solares iluminaban completamente el fondo de dicho pozo. Razonó entonces que en ese momento, el Sol se encontraba exactamente sobre la vertical del lugar. Contrató entonces a un caminante que pudiera cotejar (a pie) la distancia entre ese lugar y una torre ubicada en la ciudad de Syene. Se dijo así mismo que, dada la enorme distancia que separa a la Tierra del Sol, los rayos luminosos de éste deberían caer paralelos entre sí en cualquier lugar de la Tierra. Por lo tanto, si ésta fuese plana, el mismo día y a la misma hora el Sol debería encontrarse también sobre la ciudad de Syene en forma perfectamente vertical. Si esto fuese así, la sombra que la torre de Syene proyectaría sobre el suelo debería ser nula, cosa que no ocurrió.
Sucedió lo esperado, la torre de Syene, dada la curvatura terrestre, no guardaba la misma verticalidad que el pozo de Alejandría, sino que entre ambos había cierto ángulo. Sencillamente midió el ángulo que formaba la sombra de la torre, que sin lugar a dudas es el mismo que se mediría desde el centro de la tierra entre ambos objetos (el pozo y la torre): siete grados (7º). A su vez, el caminante enviado regresó con la novedad de que entre ambos lugares había 800 kilómetros de distancia. Lo que quedaba era realmente sencillo:
Si 7º de circunferencia terrestre equivalen a 800 kilómetros, entonces los 360º del perímetro terrestre tendrían que alcanzar una cifra cercana a los 41.000 kilómetros.
7º ________________ 800 km.
360º ______________ (360 x 800) / 7
En realidad, en aquella época no se utilizaban los kilómetros para medir distancias sino los “estadios” que tomaban como unidad de medida la longitud del estadio olímpico. El valor del “estadio” se presta a controversias. Eratóstenes determinó la distancia entre Syene y Alejandría en 252.000 estadios. De adoptar el valor del estadio sugerido por Plinio, en 157,5 metros, el error cometido por Eratóstenes sería tan sólo de 80 kilómetros. Nada mal ¿verdad?
Un experimento casero
La experiencia de Eratóstenes me da pie para sugerirle un sencillo experimento casero a fin de determinar con suma exactitud los 4 puntos cardinales con la ayuda de tan solo una varilla cualquiera. Esto por supuesto en el caso que a Ud. le interese trazarlos en su casa por alguna razón en particular, por ejemplo para ubicar una veleta, para trabajar con algún telescopio, para instalar un reloj de sol, o bien porque no tiene otra cosa mejor que hacer. Ni se le ocurra intentar hacerlo en navegación porque los resultados serían desastrosos.
Para empezar, busque un rincón de su casa donde incida el Sol cerca del mediodía, un rato antes y un rato después. Previo al mediodía instale la varilla en el suelo o sobre alguna mesa lo más vertical que pueda y trace la sombra que ésta proyecta con un lápiz. Mida la longitud de la línea trazada. Notará que a medida que pasa el tiempo la longitud de la sombra se va acortando, alcanzando su mínima longitud exactamente cuando el Sol atraviesa por el meridiano del lugar. A partir de ese instante, la sombra volverá a estirarse nuevamente. Espere hasta que la sombra proyectada vuelva a tener la misma longitud que la que midió al principio, y vuelva a trazarla.
Una luego los dos extremos de las líneas trazadas formando un triángulo. Divida esta línea por la mitad y una ese punto con el vértice del triángulo. Ha trazado usted la “meridiana” del lugar, al igual que quien lo hace con un sextante. La línea trazada apunta al Norte y al Sur. Si quiere los demás puntos cardinales, simplemente trace una perpendicular a dicha línea.
Los astros “culminan” alcanzando su máxima altura respecto del horizonte cuando atraviesan el meridiano del lugar. En el caso del Sol, cuando esto ocurre, la sombra proyectada será la más pequeña. Lo que hicimos fue simplemente encontrar la línea en que la sombra proyectada por el Sol era la más corta, por lo tanto hallamos el meridiano del lugar.
Para los más curiosos
Este método permite también calcular la latitud del lugar, claro que para ello es preciso conocer la declinación del Sol (equivalente a la latitud) para ese día, dato que puede obtenerse del Almanaque Náutico, o bien de la página oficial del Servicio de Hidrografía Naval.
En el gráfico que sigue se puede apreciar al Sol en el momento de su “culminación” respecto del observador “Z”, o sea cuando atraviesa su meridiano. Sin entrar en consideraciones demasiado complejas, la latitud del observador (Z) surge, en este caso puntual, de sumar la declinación del Sol y la distancia zenital al mismo. Para aclarar un poco las cosas diremos que la altura (h) de un astro cualquiera queda definida por el ángulo formado entre el horizonte y la visual al astro en cuestión. A su vez, la distancia zenital (Dz) es el ángulo formado entre la visual a dicho astro y el zenit del observador. Dado que entre el horizonte y el zenit hay 90º, la distancia zenital será igual a 90º – h.
Como dijimos anteriormente, la declinación la obtenemos del Almanaque Náutico y la distancia zenital la acabamos de medir casi sin darnos cuenta. Es, en definitiva, el ángulo que forma el extremo superior de la varilla y la línea media del triángulo formado por la sombra proyectada. El mismo ángulo que midió Eratóstenes. Sólo resta hacer el cálculo.
Téngase en cuenta que la fórmula es válida solo en el caso que el observador y el Sol guarden entre sí las posiciones relativas de la figura anterior. Para otros casos, habrá que deducir la fórmula construyendo un nuevo esquema.
Bueno, tal vez nos hayamos corrido un poco del tema central de esta nota. Lo cierto es que, según parece, la Tierra era redonda. ¿Hasta cuando van a seguir insistiendo con la historia del huevo?
Ah, me olvidaba. La palabra “Planeta” proviene del griego (Planetai) y quiere decir “errante”. Los planetas recibieron ese nombre en alusión al lento movimiento que éstos describen respecto de las estrellas. Así que, aunque la Tierra sea redonda, podemos continuar llamándola “Planeta”.
Darío G. Fernández
Director del ISNDF